Coronavirus Symptoms Fall Into Six Different Clusters, Study Finds


 
10.9k
Shares
 

By Nicola Davis

Symptoms of Covid-19 appear to fall into six different groupings, researchers have revealed, in work they say could help to predict whether a patient will end up needing a ventilator or other breathing support.

The team say the findings could give healthcare providers several days advanced warning of demand for hospital care and respiratory support.

But it could also help flag patients at risk of becoming seriously ill, meaning home support, such as an oxygen meter or nurse visits, could be provided so that any deterioration is spotted quickly and hospital attendance is prompt. At present, the team added, the average time to get to hospital with Covid-19 is 13 days.

“Anything you can do earlier to stop people coming in half-dead is going to increase the chance of survival and also stop clogging up hospital beds unnecessarily,” said Prof Tim Spector of King’s College London, a co-author of the work.

Symptoms of Covid-19 appear to fall into six different groupings, researchers have revealed, in work they say could help to predict whether a patient will end up needing a ventilator or other breathing support.

The team say the findings could give healthcare providers several days advanced warning of demand for hospital care and respiratory support.

But it could also help flag patients at risk of becoming seriously ill, meaning home support, such as an oxygen meter or nurse visits, could be provided so that any deterioration is spotted quickly and hospital attendance is prompt. At present, the team added, the average time to get to hospital with Covid-19 is 13 days.

“Anything you can do earlier to stop people coming in half-dead is going to increase the chance of survival and also stop clogging up hospital beds unnecessarily,” said Prof Tim Spector of King’s College London, a co-author of the work.

And there was more. “We saw that there was a very clear gradient between these clusters and outcomes in terms of [participants’ need for] respiratory support,” said Dr Claire Steves, clinical senior author on the paper from King’s College London, adding other factors such as older age or certain pre-existing medical conditions were more common in some groups.

The six groupings, or “clusters”, are:

Cluster 1: Mainly upper respiratory tract symptoms, such as a persistent cough, with muscle pain also present. About 1.5% of patients in this group required respiratory support, with 16% making one or more trips to hospital. This was the most common cluster of symptoms, affecting 462 participants.

Cluster 2: Mainly upper respiratory tract symptoms, but also a greater frequency of skipped meals and fever. Of patients in this group 4.4% required respiratory support, with 17.5% making one or more trips to hospital.

Cluster 3: Gastrointestinal symptoms such as diarrhoea, but few other symptoms. While only 3.7% of patients in this group later needed respiratory support, almost 24% made at least one visit to hospital.

Cluster 4: Early signs of severe fatigue, continuous chest pain and cough. Of patients in this group 8.6% required respiratory support, with 23.6% making one or more trips to hospital.

Cluster 5: Confusion, skipped meals and severe fatigue. Of patients in this group 9.9% required respiratory support, with 24.6% making one or more trips to hospital.

Cluster 6: Marked respiratory distress including early onset of breathlessness and chest pain, as well as confusion, fatigue and gastrointestinal symptoms. Almost 20% of this group needed respiratory support and 45.5% made one or more visits to hospital. But this was the least common symptom cluster, affecting 167 participants.

The team said the first two clusters seem to be “milder” forms of Covid-19.

Similar groupings were found when the researchers repeated the work with data from 1,047 different app users, with the team adding headaches, and loss of smell and taste, which cropped up in all clusters, but the latter was longer lasting in milder cases.

The researchers say tracking symptoms improves the ability to predict the trajectory of a Covid-19 patient.

Spector said: “By recording all the symptoms and when they occur in something like a medical app you can significantly increase the ability to predict who is going to need hospital support, and potentially save lives.”

Based on the first five days of reported symptoms, together with patient characteristics such as age, sex and pre-existing medical conditions, the team could predict 79% of the time whether a patient would later need respiratory support. Using patient characteristics alone, this figure was just under 70%; chance would give a figure of 50%.

Prof Alastair Denniston of the University of Birmingham, and an expert in the use of artificial intelligence in healthcare, warned that the approach did not give a precise prediction of the risk of severe sickness, and said the results were based on data from app users, meaning they may not hold across the wider population.

But, he added, the study has merit. “This new use of symptom data is an important additional tool in helping us estimate risk in patients, and you could see how it could be helpful in trying to ensure people at highest risk get the extra monitoring and earlier intervention they need,” he said.

Louise Wain, British Lung Foundation professor of respiratory research at the University of Leicester and one of the leads of the Phosp-Covid long-term follow-up study, added the findings could also shed light on who might benefit most from medicines such as dexamethasone.

But, she said, questions remain. “We do still also need to understand how early disease trajectories relate to how quickly and completely people recover after they’ve had the virus, and whether they can be used to identify those at greatest risk of long-term effects.”

 
10.9k
Shares
 

Articles in this issue:

Leave a Comment

Please keep in mind that all comments are moderated. Please do not use a spam keyword or a domain as your name, or else it will be deleted. Let's have a personal and meaningful conversation instead. Thanks for your comments!

Image Captcha